Representation of $(p,q)$ -Bernstein polynomials in terms of $(p,q)$ -Jacobi polynomials (2024)

  • F Soleyman1,
  • I Area2,
  • M Masjed-Jamei1 &
  • JJ Nieto3

Journal of Inequalities and Applications volume2017, Articlenumber:167 (2017) Cite this article

  • 1604 Accesses

  • 4 Citations

  • Metrics details

Abstract

A representation of \((p,q)\)-Bernstein polynomials in terms of \((p,q)\)-Jacobi polynomials is obtained.

1 Introduction

Classical univariate Bernstein polynomials were introduced by Bernstein in a constructive proof for the Stone-Weierstrass approximation theorem [1], and they are defined as [2]

$$b_{i}^{n}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}, \quad i=0,1,\dots,n. $$

They form a basis of polynomials and satisfy a number of important properties as non-negativity (\(b_{i}^{n}(x) \geq0\) for \(0 \leq x \leq 1\)), partition of unity (\(\sum_{i=0}^{n} b_{i}^{n}(x)=1\)) or symmetry (\(b_{i}^{n}(x)=b_{n-i}^{n}(1-x)\)).

For a given real-valued defined and bounded function f on the interval \([0,1]\), the nth Bernstein polynomial for f is

$$B_{n}(f) (x)=\sum_{k=0}^{n} b_{k}^{n}(x) f \biggl(\frac{k}{n} \biggr). $$

Then, for each point x of continuity of f, we have \(B_{n}(f)(x) \to f(x)\) as \(n \to\infty\). Moreover, if f is continuous on \([0,1]\) then \(B_{n}(f)\) converges uniformly to f as \(n \to\infty\). Also, for each point x of differentiability of f, we have \(B_{n}'(f)(x) \to f'(x)\) as \(n \to\infty\) and if f is continuously differentiable on \([0,1]\) then \(B_{n}'(f)\) converges to \(f'\) uniformly as \(n \to \infty\).

Bernstein polynomials have been generalized in the framework of q-calculus. More precisely, Lupaş [3] initiated the application of q-calculus in area of the approximation theory, and introduced the q-Bernstein polynomials. Later on, Philips [4] proposed and studied other q-Bernstein polynomials. In both the classical case and in its q-analogs, expansions of Bernstein polynomials have been obtained in terms of appropriate orthogonal bases [5, 6].

Mursaleen et al. [7] recently introduced first the concept of \((p, q)\)-calculus in approximation theory and studied the \((p, q)\)-analog of Bernstein operators. The approximation properties for these operators based on Korovkin’s theorem and some direct theorems were considered [8]. Also, many well-known approximation operators have been introduced using these techniques, such as Bleimann-Butzer-Hahn operators [9] and Szász-Mirakyan operators [10]. Very recently Milovanović et al. [11] considered a \((p, q)\)-analog of the beta operators and using it proposed an integral modification of the generalized Bernstein polynomials. \((p,q)\)-analogs of classical orthogonal polynomials have been characterized in [12].

The main aim of this work is to obtain a representation of \((p,q)\)-Bernstein polynomials in terms of suitable \((p,q)\)-orthogonal polynomials, where the connection coefficients are proved to satisfy a three-term recurrence relation. For this purpose, we have divided the work in two sections. First, we present the basic definitions and notations. Later, in Section3 we obtain the main results of this work relating \((p,q)\)-Bernstein polynomials and \((p,q)\)-Jacobi orthogonal polynomials.

2 Basic definitions and notations

Next, we summarize the basic definitions and results which can be found in [1318] and the references therein.

The \((p,q)\)-power is defined as

$$ \bigl((a,b);(p,q)\bigr)_{k}=\prod _{j=0}^{k-1} \bigl(ap^{j}-bq^{j} \bigr)\quad\text{with } \bigl((a,b);(p,q)\bigr)_{0}=1. $$

(1)

The \((p,q)\)-hypergeometric series is defined as

$$ \begin{aligned}[b] & {}_{r} \Phi_{s}\left ( \textstyle\begin{array}{c}{(a_{1p},a_{1q}),\dots,(a_{rp},a_{rq})}\\ {(b_{1p},b_{1q}),\dots,(b_{sp},b_{sq})} \end{array}\displaystyle \Big|{(p,q)};{z} \right ) \\ &\quad= \sum_{j=0}^{\infty}\frac{((a_{1p},a_{1q}),\dots,(a_{rp},a_{rq});(p, q))_{j}}{((b_{1p},b_{1q}),\dots,(b_{sp},b_{sq}); (p,q))_{j}} \frac {z^{j}}{((p,q);(p,q))_{j}} \bigl((-1)^{j} (q/p)^{\frac{j(j-1)}{2}} \bigr)^{1+s-r}, \end{aligned} $$

(2)

where

$$\bigl((a_{1p},a_{1q}),\dots,(a_{rp},a_{rq});(p, q) \bigr)_{j}=\prod_{s=1}^{r} \bigl((a_{sp},a_{sq});(p, q) \bigr)_{j}, $$

and \(r, s \in \mathbb {Z}_{+}\) and \(a_{1p},a_{1q},\dots ,a_{rp},a_{rq},b_{1p},b_{1q},\dots,b_{sp},b_{sq},z \in \mathbb {C}\).

The \((p,q)\)-difference operator is defined as (see e.g. [14])

$$ (\text{${\mathcal {D}}_{p,q}$}f) (x)=\frac{\text{${\mathcal {L}}_{p}$} f(x)-\text{${\mathcal {L}}_{q}$} f(x)}{(p-q)x},\quad x\neq0, $$

(3)

where the shift operator is defined by

$$ \text{${\mathcal {L}}_{a}$}h(x)=h(ax), $$

(4)

and \((\text{${\mathcal {D}}_{p,q}$}f)(0)=f'(0)\), provided that f is differentiable at 0.

The \((p,q)\)-Bernstein polynomials are defined as

$$ b_{i}^{n}(x;p,q)=p^{n(1-n)/2} \begin{bmatrix}{n}\\{i} \end{bmatrix} _{p,q} p^{i(i-1)/2} x^{i} \bigl((1,x);(p,q)\bigr)_{n-i}, $$

(5)

and can be expanded in the basis \(\{x^{k}\}_{k \geq0}\) as

$$ b_{i}^{n}(x;p,q)=\sum _{k=i}^{n} (-1)^{k-i} q^{(k-i)(k-i-1)/2} p^{\frac{1}{2} ((i-1) i+k (k-2 n+1))} \begin{bmatrix}{n}\\{k} \end{bmatrix} _{p,q} \begin{bmatrix}{k}\\{i} \end{bmatrix} _{p,q} x^{k}. $$

(6)

From the definition of \((p,q)\)-Bernstein polynomials it is possible to derive the basic properties of \((p,q)\)-Bernstein polynomials.

  1. (1)

    Partition of unity

    $$\sum_{i=0}^{n} b_{i}^{n}(x;p,q)=1. $$

  2. (2)

    End-point properties

    $$b_{i}^{n}(0;p,q)= \textstyle\begin{cases} 1, & i=0, \\ 0, & \text{otherwise}, \end{cases}\displaystyle \qquad b_{i}^{n}(1;p,q)= \textstyle\begin{cases} 1, & i=n, \\ 0, & \text{otherwise}. \end{cases} $$

The \((p,q)\)-Jacobi polynomials are defined by

$$ P_{n}(x;\alpha,\beta;p,q)= {}_{2} \Phi_{1}\left ( \textstyle\begin{array}{c}{(p^{-n},q^{-n}),(p ^{\alpha+\beta+n+1},q^{\alpha +\beta+n+1})}\\ {(p ^{\beta+1},q^{\beta+1})} \end{array}\displaystyle \Big|{(p,q)};{ \frac{x q^{-\alpha}}{p}} \right ) , $$

(7)

and they satisfy the second order \((p,q)\)-difference equation

$$ \begin{aligned}[b] &\frac{q x (q x-p)}{p^{2}} \bigl({ \mathcal{D}}_{p,q}^{2} y \bigr) (x)+ \biggl( \frac {x (p^{\alpha+\beta+2} q^{-\alpha-\beta}-q^{2} )-p^{\beta+2} q^{-\beta}+p q}{p^{2} (p-q)} \biggr) \text{${\mathcal {L}}_{p}$} \bigl((\text{${\mathcal {D}}_{p,q}$}y) (x) \bigr) \\ &\quad+ [n]_{p,q} \biggl(\frac{q p^{-n-2}-p^{\alpha+\beta -1} q^{-\alpha -\beta-n}}{p-q} \biggr) \text{${\mathcal {L}}_{pq}$} y(x)=0. \end{aligned} $$

(8)

The \((p,q)\)-Jacobi polynomials satisfy the three-term recurrence relation

$$ \begin{gathered} P_{0}(x;\alpha,\beta;p,q)=1, \qquad P_{1}(x;\alpha,\beta ;p,q)=x-B_{0}(\alpha,\beta;p,q), \\ P_{n+1}(x;\alpha,\beta;p,q)= \bigl(x-B_{n}(\alpha,\beta;p,q) \bigr) P_{n}(x;\alpha,\beta;p,q) - C_{n}(\alpha,\beta;p,q) P_{n-1}(x;\alpha,\beta;p,q), \end{gathered} $$

where

$$ \begin{aligned}[b] B_{n}(\alpha,\beta;p,q)={}& \frac{p^{n+2} q^{\alpha+n+1}}{(p-q)^{2} [\alpha+\beta+2 n]_{p,q} [\alpha+\beta+2 n+2]_{p,q}} \\ &\times \bigl( \bigl(p^{\beta}+q^{\beta} \bigr) q^{\alpha+\beta+2 n+1}-(p+q) \bigl(p^{\alpha}+q^{\alpha} \bigr) p^{\beta+n} q^{\beta +n} \\ &+ \bigl(p^{\beta}+q^{\beta } \bigr) p^{\alpha+\beta+2 n+1} \bigr) \end{aligned} $$

(9)

and

$$ C_{n}(\alpha,\beta;p,q)=\frac{p^{\beta+2 n+3} q^{2 \alpha+\beta+2 n+1} [n]_{p,q} [\alpha+n]_{p,q} [\beta +n]_{p,q} [\alpha +\beta+n]_{p,q}}{[\alpha+\beta +2 n-1]_{p,q} ([\alpha+\beta+2 n]_{p,q})^{2} [\alpha+\beta+2 n+1]_{p,q}}. $$

(10)

3 Representation of \((p,q)\)-Bernstein polynomials in terms of \((p,q)\)-Jacobi polynomials

Lemma 3.1

The \((p,q)\)-Bernstein polynomials satisfy the following first order \((p,q)\)-difference equation:

$$ (p x-1) x \bigl(D_{p,q}b_{i}^{n} \bigr) (x;p,q) + \bigl(-p^{1-n} [n]_{p,q} x+p^{-i} [i]_{p,q} \bigr) b_{i}^{n}(p x;p,q) =0. $$

(11)

Proof

The result can be obtained by equating the coefficients in \(x^{j}\). □

If we introduce the first order \((p,q)\)-difference operator

$$ L_{i,n}=(p x-1) x D_{p,q}+ \bigl(-p^{1-n} [n]_{p,q} x+p^{-i} [i]_{p,q} \bigr) {\mathcal{L}}_{p}, $$

(12)

then

$$L_{i,n}b_{i}^{n}(x;p,q)=0. $$

Lemma 3.2

The \((p,q)\)-Jacobi polynomials satisfy the following structure relation:

$$ \begin{aligned}[b] &x (p x-1 ) D_{p,q} \bigl(P_{n} \bigl(p^{2} x;\alpha,\beta;p,q \bigr) \bigr) \\ &\quad= [n]_{p,q} p^{-n-2} P_{n+1} \bigl(p^{3}x;\alpha, \beta;p,q \bigr) + \varpi_{1}(n) P_{n} \bigl(p^{3}x; \alpha,\beta;p,q \bigr) \\ &\qquad+ \varpi_{2}(n) P_{n-1} \bigl(p^{3}x;\alpha, \beta;p,q \bigr), \end{aligned} $$

(13)

where

$$ \begin{gathered} \varpi_{1}(n)=-\frac{[n]_{p,q} (-(p+q) q^{\alpha +n}-p^{\beta +n}+p^{\alpha+\beta+2 n+1}+q^{\alpha+\beta+2 n+1} ) [\alpha +\beta+n+1]_{p,q}}{(p-q) [\alpha+\beta+2 n]_{p,q} [\alpha +\beta+2 n+2]_{p,q}}, \\ \varpi_{2}(n)=\frac{q^{\alpha+n} p^{\beta+2 n+1} [n]_{p,q} [\alpha+n]_{p,q} [\beta+n]_{p,q} [\alpha+\beta+n]_{p,q} [\alpha+\beta+n+1]_{p,q}}{[\alpha+\beta+2 n-1]_{p,q} ([\alpha+\beta+2 n]_{p,q})^{2} [\alpha +\beta+2 n+1]_{p,q}}. \end{gathered} $$

Proof

The result follows from (7) by equating the coefficients in \(x^{j}\). □

Theorem 3.1

The \((p,q)\)-Bernstein polynomials defined in (5) have the following representation in terms of \((p,q)\)-Jacobi polynomials defined in (7):

$$ b_{i}^{n}(x;p,q)=\sum _{k=0}^{n} H_{k}(i,n;\alpha,\beta ;p,q)P_{k} \bigl(p^{2}x;\alpha,\beta;p,q \bigr), $$

(14)

where the connection coefficients \(H_{k}(i,n;\alpha,\beta;p,q)\) satisfy the following three-term recurrence relation:

$$ \begin{aligned}[b] &H_{k-1}(i,n;\alpha, \beta;p,q) \Lambda_{1}(k-1,i,n; \alpha,\beta;p,q)+ H_{k}(i,n; \alpha,\beta;p,q) \Lambda_{2}(k,i,n; \alpha,\beta;p,q) \\ &\quad+ H_{k+1}(i,n;\alpha,\beta;p,q) \Lambda_{3}(k+1,i,n; \alpha, \beta;p,q)=0, \end{aligned} $$

(15)

valid for \(1 \leq k \leq n-1\) with initial conditions

$$\begin{aligned}& H_{n+1}(i,n;\alpha,\beta;p,q)=0, \end{aligned}$$

(16)

$$\begin{aligned}& H_{n}(i,n;\alpha,\beta;p,q)=(-1)^{n+1} q^{-\frac{1}{2} (1-n) n} p^{-n (n + 3)/2 + k(k+1)/2} \begin{bmatrix}{n}\\{i} \end{bmatrix} _{p,q}, \end{aligned}$$

(17)

and

$$ \textstyle\begin{cases} \Lambda_{1}(k,i,n;\alpha,\beta;p,q)=p^{-k-2} [k]_{p,q}-p^{-n-2}[n]_{p,q},\\ \Lambda_{2}(k,i,n;\alpha,\beta;p,q)=p^{-i} [i]_{p,q} - p^{-2-n} [n]_{p,q} B_{k}(\alpha,\beta;p,q) + \varpi_{1}(k), \\ \Lambda_{3}(k,i,n;\alpha,\beta;p,q)=-p^{-n-2} [n]_{p,q} C_{k}(\alpha,\beta;p,q) + \varpi_{2}(k). \end{cases} $$

(18)

Proof

In order to obtain the result we shall apply the so-called Navima algorithm (see e.g. [19, 20] and the references therein) for solving connection problems. If we apply the first order linear operator \(L_{i,n}\) defined in (12) to both sides of (14) we have

$$ \begin{aligned} 0={}&\sum_{k=0}^{n} H_{k}(i,n; \alpha,\beta;p,q)L_{i,n} P_{k} \bigl(p^{2}x;\alpha, \beta;p,q \bigr) \\ ={}&\sum_{k=0}^{n} H_{k}(i,n; \alpha,\beta;p,q) \bigl((px-1) x D_{p,q} \bigl(P_{k} \bigl(p^{2}x;\alpha,\beta;p,q \bigr) \bigr) \\ &+ \bigl(-p^{1-n} [n]_{p,q} x+p^{-i} [i]_{p,q} \bigr) P_{k} \bigl(p^{3}x; \alpha,\beta;p,q \bigr) \bigr). \end{aligned} $$

From the three-term recurrence relation for \((p,q)\)-Jacobi polynomials it yields

$$ \begin{gathered} \bigl(-p^{1-n} [n]_{p,q} x+p^{-i} [i]_{p,q} \bigr) P_{k} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) \\ \quad=-p^{-n-2} [n]_{p,q} P_{k+1} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) \\ \qquad{}+ p^{-2-n-i} \bigl( -p^{n+2} [i]_{p,q}+p^{i} [n]_{p,q} B_{k}(\alpha,\beta;p,q) \bigr) P_{k} \bigl(p^{3}x; \alpha,\beta;p,q \bigr) \\ \qquad{}-p^{-n-2} [n]_{p,q} C_{k}(\alpha, \beta;p,q)P_{k-1} \bigl(p^{3}x;\alpha,\beta;p,q \bigr). \end{gathered} $$

Therefore, by using the structure relation for \((p,q)\)-Jacobi polynomials (13) we have

$$ \begin{gathered} (px-1) x D_{p,q} \bigl(P_{k} \bigl(p^{2}x;\alpha, \beta;p,q \bigr) \bigr) + \bigl(-p^{1-n} [n]_{p,q} x+p^{-i} [i]_{p,q} \bigr) P_{k} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) \\ \quad= \Lambda_{1}(k,i,n;\alpha,\beta;p,q) P_{k+1} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) +\Lambda_{2}(k,i,n; \alpha,\beta;p,q) P_{k} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) \\ \qquad{}+\Lambda_{3}(k,i,n;\alpha,\beta;p,q) P_{k-1} \bigl(p^{3}x;\alpha,\beta;p,q \bigr), \end{gathered} $$

where \(\Lambda_{i}(k,i,n;\alpha,\beta;p,q)\) are given in (18).

As a consequence,

$$ \begin{aligned} 0={}&\sum_{k=0}^{n} H_{k}(i,n; \alpha,\beta;p,q) \bigl(\Lambda_{1}(k,i,n; \alpha,\beta;p,q) P_{k+1} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) \\ &+ \Lambda_{2}(k,i,n;\alpha,\beta;p,q) P_{k} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) + \Lambda_{3}(k,i,n; \alpha,\beta;p,q) P_{k-1} \bigl(p^{3}x;\alpha,\beta;p,q \bigr) \bigr). \end{aligned} $$

By using the linear independence of \(\{P_{k}(p^{3}x;\alpha,\beta ;p,q)\}\) we obtain the three-term recurrence relation (15) for the connection coefficients \(H_{k}(i,n;\alpha,\beta;p,q)\), where the initial conditions are obtained by equating the highest power in \(x^{k}\). □

4 Conclusions

In this work we have obtained a three-term recurrence relation for the coefficients in the expansion of \((p,q)\)-Bernstein polynomials in terms of \((p,q)\)-Jacobi polynomials. For our purposes some auxiliary results both for \((p,q)\)-Bernstein polynomials and \((p,q)\)-Jacobi polynomials have been derived.

References

  1. Bernstein, S: Démonstration du théorème de Weierstrass fondé sur le calcul des probabilities. Commun. Soc. Math. Kharkov 13, 1-2 (1912)

    Google Scholar

  2. Lorentz, GG: Bernstein Polynomials. University of Toronto Press, Toronto (1953)

    MATH Google Scholar

  3. Lupaş, A: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), pp.85-92, Preprint, 87-9. Univ. “Babeş-Bolyai”, Cluj-Napoca (1987)

    Google Scholar

  4. Phillips, GM: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4(1-4), 511-518 (1997)

    MathSciNet MATH Google Scholar

  5. Area, I, Godoy, E, Woźny, P, Lewanowicz, S, Ronveaux, A: Formulae relating little q-Jacobi, q-Hahn and q-Bernstein polynomials: application to q-Bézier curve evaluation. Integral Transforms Spec. Funct. 15(5), 375-385 (2004)

    Article MathSciNet MATH Google Scholar

  6. Ronveaux, A, Zarzo, A, Area, I, Godoy, E: Bernstein bases and Hahn-Eberlein orthogonal polynomials. Integral Transforms Spec. Funct. 7(1-2), 87-96 (1998)

    Article MathSciNet MATH Google Scholar

  7. Mursaleen, M, Ansari, KJ, Khan, A: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874-882 (2015)

    MathSciNet Google Scholar

  8. Kang, SM, Rafiq, A, Acu, A-M, Ali, F, Kwun, YC: Some approximation properties of \((p,q)\)-Bernstein operators. J. Inequal. Appl. 2016(169), Article ID 10 (2016)

    MathSciNet MATH Google Scholar

  9. Mursaleen, M, Nasiruzzaman, M, Khan, A, Ansari, KJ: Some approximation results on Bleimann-Butzer-Hahn operators defined by \((p,q)\)-integers. Filomat 30(3), 639-648 (2016)

    Article MathSciNet Google Scholar

  10. Acar, T: \((p,q)\)-generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685-2695 (2016)

    Article MathSciNet MATH Google Scholar

  11. Milovanović, GV, Gupta, V, Malik, N: \((p, q)\)-Beta functions and applications in approximation. Bol. Soc. Mat. Mexicana (2016). doi:10.1007/s40590-016-0139-1

    Google Scholar

  12. Masjed-Jamei, M, Soleyman, F, Area, I, Nieto, JJ: On \((p, q)\)-classical orthogonal polynomials and their characterization theorems. Adv. Differ. Equ. 2017, Article ID 186 (2017). doi:10.1186/s13662-017-1236-9

    Article MathSciNet Google Scholar

  13. Burban, IM, Klimyk, AU: \(P,Q\)-differentiation, \(P,Q\)-integration, and \(P,Q\)-hypergeometric functions related to quantum groups. Integral Transforms Spec. Funct. 2(1), 15-36 (1994)

    Article MathSciNet MATH Google Scholar

  14. Chakrabarti, R, Jagannathan, R: A \((p,q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A 24(13), L711-L718 (1991)

    Article MathSciNet MATH Google Scholar

  15. Gasper, G, Rahman, M: Basic Hypergeometric Series, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol.96. Cambridge University Press, Cambridge (2004)

    Book MATH Google Scholar

  16. Kac, V, Cheung, P: Quantum Calculus. Universitext Springer, New York (2002)

    Book MATH Google Scholar

  17. Koekoek, R, Lesky, PA, Swarttouw, RF: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics. Springer, Berlin (2010)

    Book MATH Google Scholar

  18. Sadjang, PN: On the fundamental theorem of \((p,q)\)-calculus and some \((p,q)\)-Taylor formulas. Technical report (2013). arXiv:1309.3934v1

  19. Godoy, E, Ronveaux, A, Zarzo, A, Area, I: Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: continuous case. J. Comput. Appl. Math. 84(2), 257-275 (1997)

    Article MathSciNet MATH Google Scholar

  20. Area, I, Godoy, E, Ronveaux, A, Zarzo, A: Inversion problems in the q-Hahn tableau. J. Symb. Comput. 28(6), 767-776 (1999)

    Article MathSciNet MATH Google Scholar

Download references

Acknowledgements

The authors thank both reviewers for their comments. This work has been partially supported by the Ministerio de Ciencia e Innovación of Spain under grant MTM2016-75140-P, co-financed by the European Community fund FEDER, and Xunta de Galicia, grants GRC 2015-004 and R 2016/022. The first author thanks the hospitality of Departamento de Estatística, Análise Matemática e Optimización of Universidade de Santiago de Compostela, and Departamento de Matemática Aplicada II of Universidade de Vigo during her visit.

Author information

Authors and Affiliations

  1. Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

    F Soleyman&M Masjed-Jamei

  2. Departamento de Matemática Aplicada II, E.E. Aeronáutica e do Espazo, Universidade de Vigo, Campus As Lagoas s/n, Ourense, 32004, Spain

    I Area

  3. Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain

    JJ Nieto

Authors

  1. F Soleyman

    You can also search for this author in PubMedGoogle Scholar

  2. I Area

    You can also search for this author in PubMedGoogle Scholar

  3. M Masjed-Jamei

    You can also search for this author in PubMedGoogle Scholar

  4. JJ Nieto

    You can also search for this author in PubMedGoogle Scholar

Corresponding author

Correspondence to I Area.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each of the authors, FS, IA, MMJ, and JJN contributed to each part of this study equally and read and approved the final version of the manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Representation of $(p,q)$ -Bernstein polynomials in terms of $(p,q)$ -Jacobi polynomials (1)

Cite this article

Soleyman, F., Area, I., Masjed-Jamei, M. et al. Representation of \((p,q)\)-Bernstein polynomials in terms of \((p,q)\)-Jacobi polynomials. J Inequal Appl 2017, 167 (2017). https://doi.org/10.1186/s13660-017-1443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1443-7

MSC

  • 34B24
  • 39A70

Keywords

  • \((p,q)\)-Bernstein polynoimals
  • \((p,q)\)-Pearson difference equation
  • \((p,q)\)-orthogonal solutions
  • \((p,q)\)-difference operator
Representation of $(p,q)$ -Bernstein polynomials in terms of $(p,q)$ -Jacobi polynomials (2024)

References

Top Articles
Latest Posts
Article information

Author: Geoffrey Lueilwitz

Last Updated:

Views: 6349

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Geoffrey Lueilwitz

Birthday: 1997-03-23

Address: 74183 Thomas Course, Port Micheal, OK 55446-1529

Phone: +13408645881558

Job: Global Representative

Hobby: Sailing, Vehicle restoration, Rowing, Ghost hunting, Scrapbooking, Rugby, Board sports

Introduction: My name is Geoffrey Lueilwitz, I am a zealous, encouraging, sparkling, enchanting, graceful, faithful, nice person who loves writing and wants to share my knowledge and understanding with you.