6.3 Logarithmic Functions - College Algebra 2e | OpenStax (2024)

Learning Objectives

In this section, you will:

  • Convert from logarithmic to exponential form.
  • Convert from exponential to logarithmic form.
  • Evaluate logarithms.
  • Use common logarithms.
  • Use natural logarithms.
6.3 Logarithmic Functions - College Algebra 2e | OpenStax (1)

Figure 1 Devastation of March 11, 2011 earthquake in Honshu, Japan. (credit: Daniel Pierce)

In 2010, a major earthquake struck Haiti, destroying or damaging over 285,000 homes4. One year later, another, stronger earthquake devastated Honshu, Japan, destroying or damaging over 332,000 buildings,5 like those shown in Figure 1. Even though both caused substantial damage, the earthquake in 2011 was 100 times stronger than the earthquake in Haiti. How do we know? The magnitudes of earthquakes are measured on a scale known as the Richter Scale. The Haitian earthquake registered a 7.0 on the Richter Scale6 whereas the Japanese earthquake registered a 9.0.7

The Richter Scale is a base-ten logarithmic scale. In other words, an earthquake of magnitude 8 is not twice as great as an earthquake of magnitude 4. It is 1084=104=10,0001084=104=10,000 times as great! In this lesson, we will investigate the nature of the Richter Scale and the base-ten function upon which it depends.

Converting from Logarithmic to Exponential Form

In order to analyze the magnitude of earthquakes or compare the magnitudes of two different earthquakes, we need to be able to convert between logarithmic and exponential form. For example, suppose the amount of energy released from one earthquake were 500 times greater than the amount of energy released from another. We want to calculate the difference in magnitude. The equation that represents this problem is 10x=500,10x=500, where xx represents the difference in magnitudes on the Richter Scale. How would we solve for x?x?

We have not yet learned a method for solving exponential equations. None of the algebraic tools discussed so far is sufficient to solve 10x=500.10x=500. We know that 102=100102=100 and 103=1000,103=1000, so it is clear that xx must be some value between 2 and 3, since y=10xy=10x is increasing. We can examine a graph, as in Figure 2, to better estimate the solution.

6.3 Logarithmic Functions - College Algebra 2e | OpenStax (2)

Figure 2

Estimating from a graph, however, is imprecise. To find an algebraic solution, we must introduce a new function. Observe that the graph in Figure 2 passes the horizontal line test. The exponential function y=bxy=bx is one-to-one, so its inverse, x=byx=by is also a function. As is the case with all inverse functions, we simply interchange xx and yy and solve for yy to find the inverse function. To represent yy as a function of x,x, we use a logarithmic function of the form y=logb(x).y=logb(x). The base bb logarithm of a number is the exponent by which we must raise bb to get that number.

We read a logarithmic expression as, “The logarithm with base bb of xx is equal to y,y, ” or, simplified, “log base bb of xx is y.y. ” We can also say, “ bb raised to the power of yy is x,x, ” because logs are exponents. For example, the base 2 logarithm of 32 is 5, because 5 is the exponent we must apply to 2 to get 32. Since 25=32,25=32, we can write log232=5.log232=5. We read this as “log base 2 of 32 is 5.”

We can express the relationship between logarithmic form and its corresponding exponential form as follows:

logb(x)=yby=x,b>0,b1logb(x)=yby=x,b>0,b1

Note that the base bb is always positive.

6.3 Logarithmic Functions - College Algebra 2e | OpenStax (3)

Because logarithm is a function, it is most correctly written as logb(x),logb(x), using parentheses to denote function evaluation, just as we would with f(x).f(x). However, when the input is a single variable or number, it is common to see the parentheses dropped and the expression written without parentheses, as logbx.logbx. Note that many calculators require parentheses around the x.x.

We can illustrate the notation of logarithms as follows:

6.3 Logarithmic Functions - College Algebra 2e | OpenStax (4)

Notice that, comparing the logarithm function and the exponential function, the input and the output are switched. This means y=logb(x)y=logb(x) and y=bxy=bx are inverse functions.

Definition of the Logarithmic Function

A logarithm base bb of a positive number xx satisfies the following definition.

For x>0,b>0,b1,x>0,b>0,b1,

y=logb(x)isequivalenttoby=xy=logb(x)isequivalenttoby=x

where,

  • we read logb(x)logb(x) as, “the logarithm with base bb of xx ” or the “log base bb of x."x."
  • the logarithm yy is the exponent to which bb must be raised to get x.x.

Also, since the logarithmic and exponential functions switch the xx and yy values, the domain and range of the exponential function are interchanged for the logarithmic function. Therefore,

  • the domain of the logarithm function with base bis(0,).bis(0,).
  • the range of the logarithm function with base bis(,).bis(,).

Q&A

Can we take the logarithm of a negative number?

No. Because the base of an exponential function is always positive, no power of that base can ever be negative. We can never take the logarithm of a negative number. Also, we cannot take the logarithm of zero. Calculators may output a log of a negative number when in complex mode, but the log of a negative number is not a real number.

How To

Given an equation in logarithmic form logb(x)=y,logb(x)=y, convert it to exponential form.

  1. Examine the equation y=logb(x)y=logb(x) and identify b,y,andx.b,y,andx.
  2. Rewrite logb(x)=ylogb(x)=y as by=x.by=x.

Example 1

Converting from Logarithmic Form to Exponential Form

Write the following logarithmic equations in exponential form.

  1. log6(6)=12log6(6)=12
  2. log3(9)=2log3(9)=2

Solution

First, identify the values of b,y,and x.b,y,and x. Then, write the equation in the form by=x.by=x.

  • log6(6)=12log6(6)=12

    Here, b=6,y=12,andx=6.b=6,y=12,andx=6. Therefore, the equation log6(6)=12log6(6)=12 is equivalent to 612=6.612=6.

  • log3(9)=2log3(9)=2

    Here, b=3,y=2,andx=9.b=3,y=2,andx=9. Therefore, the equation log3(9)=2log3(9)=2 is equivalent to 32=9.32=9.

Try It #1

Write the following logarithmic equations in exponential form.

  1. log10(1,000,000)=6log10(1,000,000)=6
  2. log5(25)=2log5(25)=2

Converting from Exponential to Logarithmic Form

To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base b,b, exponent x,x, and output y.y. Then we write x=logb(y).x=logb(y).

Example 2

Converting from Exponential Form to Logarithmic Form

Write the following exponential equations in logarithmic form.

  1. 23=823=8
  2. 52=2552=25
  3. 104=110,000104=110,000

Solution

First, identify the values of b,y,andx.b,y,andx. Then, write the equation in the form x=logb(y).x=logb(y).

  1. 23=823=8

    Here, b=2,b=2, x=3,x=3, and y=8.y=8. Therefore, the equation 23=823=8 is equivalent to log2(8)=3.log2(8)=3.

  2. 52=2552=25

    Here, b=5,b=5, x=2,x=2, and y=25.y=25. Therefore, the equation 52=2552=25 is equivalent to log5(25)=2.log5(25)=2.

  3. 104=110,000104=110,000

    Here, b=10,b=10, x=4,x=4, and y=110,000.y=110,000. Therefore, the equation 104=110,000104=110,000 is equivalent to log10(110,000)=4.log10(110,000)=4.

Try It #2

Write the following exponential equations in logarithmic form.

  1. 32=932=9
  2. 53=12553=125
  3. 21=1221=12

Evaluating Logarithms

Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example, consider log28.log28. We ask, “To what exponent must 22 be raised in order to get 8?” Because we already know 23=8,23=8, it follows that log28=3.log28=3.

Now consider solving log749log749 and log327log327 mentally.

  • We ask, “To what exponent must 7 be raised in order to get 49?” We know 72=49.72=49. Therefore, log749=2log749=2
  • We ask, “To what exponent must 3 be raised in order to get 27?” We know 33=27.33=27. Therefore, log327=3log327=3

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate log2349log2349 mentally.

  • We ask, “To what exponent must 2323 be raised in order to get 49?49? ” We know 22=422=4 and 32=9,32=9, so (23)2=49.(23)2=49. Therefore, log23(49)=2.log23(49)=2.

How To

Given a logarithm of the form y=logb(x),y=logb(x), evaluate it mentally.

  1. Rewrite the argument xx as a power of b:b: by=x.by=x.
  2. Use previous knowledge of powers of bb identify yy by asking, “To what exponent should bb be raised in order to get x?x?

Example 3

Solving Logarithms Mentally

Solve y=log4(64)y=log4(64) without using a calculator.

Solution

First we rewrite the logarithm in exponential form: 4y=64.4y=64. Next, we ask, “To what exponent must 4 be raised in order to get 64?”

We know

43=6443=64

Therefore,

log(64)4=3log(64)4=3

Try It #3

Solve y=log121(11)y=log121(11) without using a calculator.

Example 4

Evaluating the Logarithm of a Reciprocal

Evaluate y=log3(127)y=log3(127) without using a calculator.

Solution

First we rewrite the logarithm in exponential form: 3y=127.3y=127. Next, we ask, “To what exponent must 3 be raised in order to get 127?127?

We know 33=27,33=27, but what must we do to get the reciprocal, 127?127? Recall from working with exponents that ba=1ba.ba=1ba. We use this information to write

33=133=12733=133=127

Therefore, log3(127)=3.log3(127)=3.

Try It #4

Evaluate y=log2(132)y=log2(132) without using a calculator.

Using Common Logarithms

Sometimes you may see a logarithm written without a base. When you see one written this way, you need to look at the expression before evaluating it. It may be that the base you use doesn't matter. If you find it in computer science, it often means log2(x)log2(x). However, in mathematics it almost always means the common logarithm of 10. In other words, the expression log( x ) log( x ) often means log10(x).log10(x).

Definition of the Common Logarithm

A common logarithm is a logarithm with base 10.10. We can also write log10(x)log10(x) simply as log(x).log(x). The common logarithm of a positive number xx satisfies the following definition.

For x>0,x>0,

y=log(x)isequivalentto10y=xy=log(x)isequivalentto10y=x

We read log(x)log(x) as, “the logarithm with base 1010 of xx ” or “log base 10 of x.x.

The logarithm yy is the exponent to which 1010 must be raised to get x.x.

Currently, we use logb(x), lg (x) logb(x), lg (x) as the common logarithm, lb(x) lb(x) as the binary logarithm, and ln(x) ln(x) as the natural logarithm. Writing lg(x) lg(x) without specifying a base is now considered bad form, despite being frequently found in older materials.

How To

Given a common logarithm of the form y=log(x),y=log(x), evaluate it mentally.

  1. Rewrite the argument xx as a power of 10:10: 10y=x.10y=x.
  2. Use previous knowledge of powers of 1010 to identify yy by asking, “To what exponent must 1010 be raised in order to get x?x?

Example 5

Finding the Value of a Common Logarithm Mentally

Evaluate y=log(1000)y=log(1000) without using a calculator.

Solution

First we rewrite the logarithm in exponential form: 10y=1000.10y=1000. Next, we ask, “To what exponent must 1010 be raised in order to get 1000?” We know

103=1000103=1000

Therefore, log(1000)=3.log(1000)=3.

Try It #5

Evaluate y=log(1,000,000).y=log(1,000,000).

How To

Given a common logarithm with the form y=log(x),y=log(x), evaluate it using a calculator.

  1. Press [LOG].
  2. Enter the value given for x,x, followed by [ ) ].
  3. Press [ENTER].

Example 6

Finding the Value of a Common Logarithm Using a Calculator

Evaluate y=log(321)y=log(321) to four decimal places using a calculator.

Solution

  • Press [LOG].
  • Enter 321, followed by [ ) ].
  • Press [ENTER].

Rounding to four decimal places, log(321)2.5065.log(321)2.5065.

Analysis

Note that 102=100102=100 and that 103=1000.103=1000. Since 321 is between 100 and 1000, we know that log(321)log(321) must be between log(100)log(100) and log(1000).log(1000). This gives us the following:

100<321<10002<2.5065<3100<321<10002<2.5065<3

Try It #6

Evaluate y=log(123)y=log(123) to four decimal places using a calculator.

Example 7

Rewriting and Solving a Real-World Exponential Model

The amount of energy released from one earthquake was 500 times greater than the amount of energy released from another. The equation 10x=50010x=500 represents this situation, where xx is the difference in magnitudes on the Richter Scale. To the nearest thousandth, what was the difference in magnitudes?

Solution

We begin by rewriting the exponential equation in logarithmic form.

10x=500log(500)=xUsethedefinitionofthecommonlog.10x=500log(500)=xUsethedefinitionofthecommonlog.

Next we evaluate the logarithm using a calculator:

  • Press [LOG].
  • Enter 500,500, followed by [ ) ].
  • Press [ENTER].
  • To the nearest thousandth, log(500)2.699.log(500)2.699.

The difference in magnitudes was about 2.699.2.699.

Try It #7

The amount of energy released from one earthquake was 8,5008,500 times greater than the amount of energy released from another. The equation 10x=850010x=8500 represents this situation, where xx is the difference in magnitudes on the Richter Scale. To the nearest thousandth, what was the difference in magnitudes?

Using Natural Logarithms

The most frequently used base for logarithms is e,e, the value of which is approximately 2.718282.71828. Base ee logarithms are important in calculus and some scientific applications; they are called natural logarithms. The base ee logarithm, loge(x),loge(x), has its own notation, ln(x).ln(x).

Most values of ln(x)ln(x) can be found only using a calculator. The major exception is that, because the logarithm of 1 is always 0 in any base, ln1=0.ln1=0. For other natural logarithms, we can use the lnln key that can be found on most scientific calculators. We can also find the natural logarithm of any power of ee using the inverse property of logarithms.

Definition of the Natural Logarithm

A natural logarithm is a logarithm with base e.e. We write loge(x)loge(x) simply as ln(x).ln(x). The natural logarithm of a positive number xx satisfies the following definition.

For x>0,x>0,

y=ln(x)isequivalenttoey=xy=ln(x)isequivalenttoey=x

We read ln(x)ln(x) as, “the logarithm with base ee of xx” or “the natural logarithm of x.x.

The logarithm yy is the exponent to which ee must be raised to get x.x.

Since the functions y=exy=ex and y=ln(x)y=ln(x) are inverse functions, ln(ex)=xln(ex)=x for all xx and e=ln(x)xe=ln(x)x for x>0.x>0.

How To

Given a natural logarithm with the form y=ln(x),y=ln(x), evaluate it using a calculator.

  1. Press [LN].
  2. Enter the value given for x,x, followed by [ ) ].
  3. Press [ENTER].

Example 8

Evaluating a Natural Logarithm Using a Calculator

Evaluate y=ln(500)y=ln(500) to four decimal places using a calculator.

Solution

  • Press [LN].
  • Enter 500,500, followed by [ ) ].
  • Press [ENTER].

Rounding to four decimal places, ln(500)6.2146ln(500)6.2146

Try It #8

Evaluate ln(−500).ln(−500).

Media

Access this online resource for additional instruction and practice with logarithms.

  • Introduction to Logarithms

6.3 Section Exercises

Verbal

1.

What is a base bb logarithm? Discuss the meaning by interpreting each part of the equivalent equations by=xby=x and logbx=ylogbx=y for b>0,b1.b>0,b1.

2.

How is the logarithmic function f(x)=logbxf(x)=logbx related to the exponential function g(x)=bx?g(x)=bx? What is the result of composing these two functions?

3.

How can the logarithmic equation logbx=ylogbx=y be solved for xx using the properties of exponents?

4.

Discuss the meaning of the common logarithm. What is its relationship to a logarithm with base b,b, and how does the notation differ?

5.

Discuss the meaning of the natural logarithm. What is its relationship to a logarithm with base b,b, and how does the notation differ?

Algebraic

For the following exercises, rewrite each equation in exponential form.

6.

log4(q)=mlog4(q)=m

7.

loga(b)=cloga(b)=c

8.

log16(y)=xlog16(y)=x

9.

logx(64)=ylogx(64)=y

10.

logy(x)=−11logy(x)=−11

11.

log15(a)=blog15(a)=b

12.

logy(137)=xlogy(137)=x

13.

log13(142)=alog13(142)=a

14.

log(v)=tlog(v)=t

15.

ln(w)=nln(w)=n

For the following exercises, rewrite each equation in logarithmic form.

16.

4x=y4x=y

17.

cd=kcd=k

18.

m7=nm7=n

19.

19x=y19x=y

20.

x1013=yx1013=y

21.

n4=103n4=103

22.

(75)m=n(75)m=n

23.

yx=39100yx=39100

24.

10a=b10a=b

25.

ek=hek=h

For the following exercises, solve for xx by converting the logarithmic equation to exponential form.

26.

log3(x)=2log3(x)=2

27.

log2(x)=3log2(x)=3

28.

log5(x)=2log5(x)=2

29.

log3(x)=3log3(x)=3

30.

log2(x)=6log2(x)=6

31.

log9(x)=12log9(x)=12

32.

log18(x)=2log18(x)=2

33.

log6(x)=3log6(x)=3

34.

log(x)=3log(x)=3

35.

ln(x)=2ln(x)=2

For the following exercises, use the definition of common and natural logarithms to simplify.

36.

log(1008)log(1008)

37.

10log(32)10log(32)

38.

2log(.0001)2log(.0001)

39.

eln(1.06)eln(1.06)

40.

ln(e5.03)ln(e5.03)

41.

eln(10.125)+4eln(10.125)+4

Numeric

For the following exercises, evaluate the base bb logarithmic expression without using a calculator.

42.

log 3 ( 1 27 ) log 3 ( 1 27 )

43.

log6(6)log6(6)

44.

log 2 ( 1 8 )+4 log 2 ( 1 8 )+4

45.

6log8(4)6log8(4)

For the following exercises, evaluate the common logarithmic expression without using a calculator.

46.

log(10,000)log(10,000)

47.

log(0.001)log(0.001)

48.

log(1)+7log(1)+7

49.

2log(1003)2log(1003)

For the following exercises, evaluate the natural logarithmic expression without using a calculator.

50.

ln(e13)ln(e13)

51.

ln(1)ln(1)

52.

ln(e0.225)3ln(e0.225)3

53.

25ln(e25)25ln(e25)

Technology

For the following exercises, evaluate each expression using a calculator. Round to the nearest thousandth.

54.

log(0.04)log(0.04)

55.

ln(15)ln(15)

56.

ln( 4 5 ) ln( 4 5 )

57.

log(2)log(2)

58.

ln(2)ln(2)

Extensions

59.

Is x=0x=0 in the domain of the function f(x)=log(x)?f(x)=log(x)? If so, what is the value of the function when x=0?x=0? Verify the result.

60.

Is f(x)=0f(x)=0 in the range of the function f(x)=log(x)?f(x)=log(x)? If so, for what value of x?x? Verify the result.

61.

Is there a number xx such that lnx=2?lnx=2? If so, what is that number? Verify the result.

62.

Is the following true: log3(27)log4(164)=−1?log3(27)log4(164)=−1? Verify the result.

63.

Is the following true: ln(e1.725)ln(1)=1.725?ln(e1.725)ln(1)=1.725? Verify the result.

Real-World Applications

64.

The exposure index EIEI for a camera is a measurement of the amount of light that hits the image receptor. It is determined by the equation EI=log2(f2t),EI=log2(f2t), where ff is the “f-stop” setting on the camera, and tt is the exposure time in seconds. Suppose the f-stop setting is 88 and the desired exposure time is 22 seconds. What will the resulting exposure index be?

65.

Refer to the previous exercise. Suppose the light meter on a camera indicates an EIEI of 2,2, and the desired exposure time is 16 seconds. What should the f-stop setting be?

66.

The intensity levels I of two earthquakes measured on a seismograph can be compared by the formula logI1I2=M1M2logI1I2=M1M2 where MM is the magnitude given by the Richter Scale. In August 2009, an earthquake of magnitude 6.1 hit Honshu, Japan. In March 2011, that same region experienced yet another, more devastating earthquake, this time with a magnitude of 9.0.8 How many times greater was the intensity of the 2011 earthquake? Round to the nearest whole number.

6.3 Logarithmic Functions - College Algebra 2e | OpenStax (2024)

References

Top Articles
Latest Posts
Article information

Author: Gregorio Kreiger

Last Updated:

Views: 6743

Rating: 4.7 / 5 (77 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Gregorio Kreiger

Birthday: 1994-12-18

Address: 89212 Tracey Ramp, Sunside, MT 08453-0951

Phone: +9014805370218

Job: Customer Designer

Hobby: Mountain biking, Orienteering, Hiking, Sewing, Backpacking, Mushroom hunting, Backpacking

Introduction: My name is Gregorio Kreiger, I am a tender, brainy, enthusiastic, combative, agreeable, gentle, gentle person who loves writing and wants to share my knowledge and understanding with you.